Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefifin Elastomer (RGO/POE) Nanofifiber Aerogels
Abstract: Flexible wearable pressure sensors have received extensive attention in recent years because of the promising application potentials in health management, humanoid robots, and human machine interfaces. Among the many sensory performances, the high sensitivity is an essential requirement for the practical use of flflexible sensors. Therefore, numerous research studies are devoted to improving the sensitivity of the flflexible pressure sensors. The fiber assemblies are recognized as an ideal substrate for a highly sensitive piezoresistive sensor because its three-dimensional porous structure can be easily compressed and can provide high interconnection possibilities of the conductive component. Moreover, it is expected to achieve high sensitivity by raising the porosity of the fiber assemblies. In this paper, the three-dimensional reduced graphene oxide/polyolefifin elastomer (RGO/POE) nanofifiber composite aerogels were prepared by chemical reducing the graphene oxide (GO)/POE nanofifiber composite aerogels, which were obtained by freeze drying the mixture of the GO aqueous solution and the POE nanofifiber suspension. It was found that the volumetric shrinkage of thermoplastic POE nanofifibers during the reduction process enhanced the compression mechanical strength of the composite aerogel, while decreasing its sensitivity. Therefore, the composite aerogels with varying POE nanofifiber usage were prepared to balance the sensitivity and working pressure range. The results indicated that the composite aerogel with POE nanofifiber/RGO proportion of 3:3 was the optimal sample, which exhibits high sensitivity and working pressure ranging from 0 to 17.7 kPa. In addition, the composite aerogel showed strong stability when it is either compressed with difffferent frequencies or reversibly compressed and released 5000 times.
Zhong Weibing, et al.Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels. Polymers, 2019, 11, 1883.