Electrochemical synthesis of chitosan/silver nanoparticles multilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property
Abstract: By coupling in situ electrochemical synthesis of silver nanoparticles (AgNPs) with the pre-deposited chitosan multilayer hydrogel, a novel type of nanocomposite coating was successfully fabricated on the stainless-steel needle electrode. Experimental results demonstrated the chitosan film can serve as a versatile medium for metal salt adsorption and stabilization, and finally electrochemical reduction of loaded silver ions to nanoparticles. The AgNPs were fabricated with a spherical shape and an average size of ~15 nm endowing considerable antibacterial property to the hydrogel. Furthermore, the unique layered architecture consisted of porous segments and compact boundaries is almost retained, resulting in a pH-dependent and staged release pattern of silver nanoparticles based on acid triggered dissolution of the multi-membrane layer by layer. Thus, considering the mild synthesizing approach, multi-functionalities and relatively low cytotoxicity, this antibacterial hydrogel would show great potential either to be used as a newly coating material for interfacial improvement of implants or as a free-standing film after being peeled off for wound dressing.
Kun Yan et al. Electrochemical synthesis of chitosan/silver nanoparticles mulilayer hydrogel coating with pH-dependent controlled release capability and antibacterial property[J]. Colloids and Surfaces B: Biointerfaces, 2021, 111711.